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Generating functional analysis of the dynamics of the batch minority game
with random external information
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We study the dynamics of the batch minority game, with random external information, using generating
functional techniques introduced by De Dominicis. The relevant control parameter in this model is the ratio
a5p/N of the numberp of possible values for the external information over the numberN of trading agents.
In the limit N→` we calculate the locationac of the phase transition~signaling the onset of anomalous
response!, and solve the statics fora.ac exactly. The temporal correlations in global market fluctuations turn
out not to decay to zero for infinitely widely separated times. Fora,ac the stationary state is shown to be
nonunique. Fora→0 we analyze our equations in leading order ina, and find asymptotic solutions with
diverging volatility s5O(a21/2) ~as regularly observed in simulations!, but also asymptotic solutions with
vanishing volatilitys5O(a1/2). The former, however, are shown to emerge only if the agents’ initial strategy
valuations are below a specific critical value.
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I. INTRODUCTION

The minority game has been the subject of much~and at
times heated! debate in the physics literature recently. It w
originally introduced in@1#, as a variation of the El Farol-Ba
problem@2#, to serve as a simple model for a situation whe
adaptive agents are competing for limited resources. It
since attracted much attention, especially as a model fo
nancial markets~see, e.g.,@3#!. The players in the minority
game are trading agents who, at every stage of the ga
have to make a decision whether to buy or to sell, on
basis of both publicly available information~i.e., past market
dynamics, weather forecasts, political developments, or s
prices! and their personal strategies. Those agents who
themselves having made the minority decision make a pr
while those agents who opted for the majority choice lo
money. After each round all agents revalue their strateg
There are many variations on the precise implementatio
this game, yet most share the same main features of
emerging market fluctuations. The important control para
eter in the model is the ratioa5p/N of the numberp of
possible values for the external information over the num
N of trading agents. If this ratioa is very large, the agent
exhibit essentially random behavior. This is reflected in
fluctuations of the total bid, which is the sum of all buye
minus the sum of all sellers. If less external information
available~or used! to base decisions upon, i.e., for reduc
a, the mismatch between buyers and sellers is found to
crease, and the market behaves more efficiently. This be
ior is now understood quite well on the basis of the repl
calculations in@4–6# and the crowd-anticrowd theory of@7#.
The situation is much less clear, however, whena becomes
very small. One possibility is that the market becomes
tremely efficient, and the number of buyers almost equals
number of sellers. Another possibility is that the misma
between buyers and sellers diverges if the amount of sh
~i.e., external! information becomes small, and the mark
becomes extremely inefficient~see, e.g.,@8,9#!.

In this paper we solve the dynamics for the original man
agent model, using the exact generating functional~or path
1063-651X/2001/63~5!/056121~16!/$20.00 63 0561
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integral! techniques introduced in@10#. After defining the
rules of the game we derive in the limitN→` an equivalent
description in terms of an effective stochastic no
Markovian single-agent process, for which we calculate
first time steps. For sufficiently large values ofa, we can
solve the statics exactly under the assumption of absenc
anomalous response. We calculate the pointac where this
assumption breaks down, resulting in a phase transition;
value for ac is identical to that found in@4#. The present
dynamical approach allows us to study the behavior of
market belowac . In this region there exist persistent no
static solutions that cannot be studied by the methods of@4#.
Below ac the market is nonergodic and the initial conditio
of the agents determine the final stationary state of the m
ket @4,5,13#. For a→0 we calculate the market volatility to
leading order ina for the case where the agents are initia
ized with only weak strategy preferences, leading to a
verging volatility with exactly the scaling exponents
5O(a21/2) predicted in@9# on the basis of heuristic argu
ments. We find a critical value for the initial strategy valu
tions above which this solution no longer exists and is
placed by an alternative solution with a vanishing volatil
of the forms5O(a1/2). Our dynamical approach allows i
addition for the calculation of the two-time correlations
the global market fluctuations, by definition inaccessib
with equilibrium methods~replica or otherwise!, which are
found to have a persistent component. Numerical simulati
confirm our theoretical results convincingly.

II. MODEL DEFINITIONS

There areN agents playing the game. We will only con
sider the case whereN is very large, and ultimately take th
limit N→`. The agents are labeled with roman indicesi, j,
k, etc. At iteration roundl all agents are given the same~as
yet unspecified! piece of external informationI m( l ) , chosen
randomly from a total numberp5aN of possible values,
i.e.,m( l )P$1, . . . ,aN%. In the original model@1# the history
of the actual market is used as the information given to
agents; however, in@11# it was shown that random
©2001 The American Physical Society21-1
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information gives~almost! the same volatility. Each agenti
hasS strategiesRia5(Ria

1 , . . . ,Ria
aN)P$21,1%aN at her dis-

posal with which to determine how to convert the exter
information into a trading decision, withaP$1, . . . ,S%.
Each componentRia

m is selected randomly and independen
from $21,1% before the start of the game, with uniform pro
abilities, and remains fixed throughout the game. The str
gies thus introduce quenched disorder into the model. E
strategy of every agent is given an initial valuation or pay
pia(0). Thechoice made for these initial values will turn o
to be crucial for the emerging behavior of the market. Giv
a choicem( l ) made for the external information presented
the start of roundl, every agenti selects the strategy labele
by ãi( l ) that for traderi has the highest payoff value at th
point in time, i.e., ãi( l )5arg maxpia(l), and subsequently

makes a binary bidbi( l )5Riãi ( l )

m( l ) . The ~rescaled! total bid at

stage l is defined asA( l )5N21/2( ibi( l ). Next all agents
update the payoff values of each strategya on the basis of
what would have happened if they had played that partic
strategy:

pia~ l 11!5pia~ l !2Ria
m~ l !A~ l !.

The minus sign in this expression has the effect that str
gies that would have produced a minority decision are
warded.

This setup so far allows for an arbitrary number of str
egiesS. The qualitative behavior of the market fluctuation
however, is found to be very much the same for all non
tensive numbers of strategies larger than 1@12,9#. We there-
fore present results here only for theS52 model, where the
equations can be simplified considerably upon introduc
for each agent the instantaneous difference between the
strategy valuationsqi( l )5@pi1( l )2pi2( l )#/2 as well as their
common partvi5(Ri11Ri2)/2 and the difference betwee
the strategiesji5(Ri12Ri2)/2. The strategy actually se
lected in roundl can now be written explicitly as a functio
of si( l )5sgn@qi(l)#, viz., Ri ã i ( l )

5vi1si( l )ji , and the evolu-
tion of the difference will now be given by

qi~ l 11!5qi~ l !2j i
m~ l !FVm~ l !1N21/2(

j
j j

m~ l !sj~ l !G , ~1!

with V5N21/2( jvjPRaN. It has been observed in numer
cal simulations~see, e.g.,@13#! that the magnitude of the
market fluctuations remains almost unchanged if a la
number of bids are performed before a reevaluation of
strategies is carried out. This is the motivation for us to stu
a modified ~and simpler! version of the dynamics of the
game, where, rather than allowing the strategy payoff va
ations to be changed at each round, only the accumul
effect of a large number of market decisions is used
change an agent’s strategy payoff valuations. This amo
to performing an average in the above dynamic equati
over the choices to be made for the external information
we also change the time unit accordingly froml ~which
05612
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measured individual rounds of the game! to a new unitt
which is proportional to the number of payoff validation u
dates, we arrive at

qi~ t11!5qi~ t !2hi2(
j

Ji j sj~ t !, ~2!

where Ji j 5ji•jj /Nt 2 and hi5ji•V/ANt 2, and with t 2

5^(Vm)2&5^(j i
m)2&5^(v i

m)2&; heret 25 1
2 . The above par-

ticular choice of time scaling has been made only becaus
gives the simplest equations later. To make a connec
with the original game, one must interpret the evolution
theqi(t) as described by Eq.~2! as the accumulated effect o
orderN iterations in the original model. Equation~2! defines
the version of the minority game analyzed in this paper. N
that Eq.~2! cannot be converted into a continuous time eq
tion, upon replacing@qi(t11)2qi(t)#/AN by dqi /dt. A
number of agents change their preferred strategy at e
iteration of Eq.~2!. The size of theirq’s will be of the order
of ~half! the step size. In the continuous time limit, in co
trast, this step size is lost; yet any discretization used
integrate the continuous time differential equation obtain
will effectively reintroduce an~arbitrary! scale for theq’s.
We regard Eq.~2! as the equivalent of what in the neur
network literature would be called the ‘‘batch’’ version o
the conventional ‘‘on-line’’ minority game. For a more de
tailed discussion concerning the validity of a continuous ti
differential equation for the thermal minority game we ref
to @14,4,15#. Finally, the magnitude of the market fluctua
tions, or volatility, is given bys25^A2&2^A&2. From the
starting pointA( l )5N21/2( i@v i

m( l )1si( l )j i
m( l )# and on the

time scales of the process~2!, one easily derives

^A&5
1

aNAN
(

i
si(

m
j i

m1OS 1

AN
D , ~3!

^A2&5
1

2
1

1

aN F(
i

hisi1
1

2 (
i j

siJi j sj G1OS 1

AN
D . ~4!

Purely random trading corresponds to^A&50 and s251.
We will also define a more general object, the volatility m
trix J tt8 ,

J tt85^@At2^At&#@At82^At8&#&, ~5!

which measures the temporal correlations of the market fl
tuations. Note thats t

25J tt . In the case where the averag
bid ^A& is zero~which will turn out to happen in the presen
model!, the volatility measures the efficiency of the mark
Zero volatility implies that supply and demand are always
the same level, and that the market is extremely efficient
large volatility implies large mismatches between supply a
demand, and is the signature of an inefficient market.

III. THE GENERATING FUNCTIONAL

There are two compelling reasons for studying the d
namics of the minority game~MG!. First, dynamical tech-
1-2
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niques do not rely on the presence of a Lyapunov functi
so that the MG can be studied for smalla. Secondly, it is
clear from simulations@13# ~see also the figures below! that,
at least on the relevant time scales, the stationary state o
minority game can depend quite strongly on the initial co
ditions. One canonical tool to deal with the dynamics of t
present problem is generating functional analysis as in
duced by De Dominicis@10#, originally developed in the
disordered systems community~to study spin glasses, in pa
ticular!. This formalism allows one to carry out the disord
average~which here is an average over all strategies! and
take theN→` limit exactly. The final result of the analysi
is a set of closed equations, which can be interpreted
describing the dynamics of an effective ‘‘single agen
@10,16#. Due to the disorder in the process, this single ag
will acquire an effective ‘‘memory,’’ i.e., she will evolve
according to a nontrivial non-Markovian stochastic proce

First we rewrite Eq.~2! as a Chapman-Kolmogorov equatio
describing the temporal evolution of an ensemble of mark

pt11~q!5E dq8 W~quq8!pt~q8!,

where, in the absence of noise, the transition probability d
sity is simply

W~quq8!5)
i

dS qi2qi81hi1(
j

Ji j sj8D
5E dq̂

~2p!N expF(
i

i q̂ i K qi2qi81hi1(
j

Ji j sj8L G
with the shorthandsj85sgn@qj8#. The moment generating
functional for a stochastic process of the present type is
fined as

Z@c#5K expF i(
t

(
i

c i~ t !qi~ t !G L
5E )

t
@dq~ t !W„q~ t11!uq~ t !…#p0„q~0!…

3expF i(
t

(
i

c i~ t !qi~ t !G .
05612
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By taking suitable derivatives of the generating function
with respect to the conjugate variablesc, one can generate
all moments ofq at arbitrary times. Upon introducing th
two short hand notations

wt
m5

1

tAN
(

i
q̂i~ t !j i

m , xt
m5

1

tAN
(

i
si~ t !j i

m ,

as well asDq5) i t@dqi(t)/A2p#, Dw5)mt@dwt
m/A2p#,

and Dx5)mt@dxt
m/A2p# ~with similar definitions forDq̂,

Dŵ, andD x̂, respectively!, the generating functional take
the following form:

Z@c#5E Dw Dŵ Dx D x̂ expH i(
tm

@ŵt
mwt

m1 x̂t
mxt

m

1wt
m~Vm/t1xt

m!#J E Dq Dq̂ p0„q~0!…

3expH 2 i

tAN
(
m i

j i
m (

t
@ŵt

mq̂i~ t !1 x̂t
msi~ t !#J

3expS i (
t i

$q̂i~ t !@qi~ t11!2qi~ t !2u i~ t !#

1c i~ t !qi~ t !% D , ~6!

where we have introduced auxiliary driving forcesu i(t) to
generate averages involvingq̂i(t) ~these can be remove
later!.

IV. DISORDER AVERAGING

At this stage we can carry out the disorder averages, to
denoted as̄ , which involve the variablesj i

m5t 2(Ri1
m

2Ri2
m ) and Vm5N21/2t 2( j (Rj 1

m 1Rj 2
m ) only. For times that

do not scale withN one obtains
expS i

t (
tm

wt
mVm2

i

tAN
(
m i

j i
m(

t
@ŵt

mq̂i~ t !1 x̂t
msi~ t !# D

5)
im

expS i t

AN
(

t
$wt

m~R11R2!2~R12R2!@ŵt
mq̂i~ t !1 x̂t

msi~ t !#% D
5expS 2

1

2 (
mtt8

@wt
mwt8

m
1ŵt

mLtt8ŵt8
m

12x̂t
mKtt8ŵt8

m
1 x̂t

mCt,t8x̂t
m#1O~N0!D ,
1-3
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where we have introducedCtt85N21( isi(t)si(t8), Ktt8
5N21( isi(t)q̂i(t8), and Ltt85N21( i q̂i(t)q̂i(t8). We iso-
late these functions via the insertion of appropriated func-
tions ~in integral representation!, and define the correspond
ing shorthand notation DC5) tt8@dCtt8 /A2p#, DK
5) tt8@dKtt8 /A2p#, andDL5) tt8@dLtt8 /A2p# ~with simi-
lar definitions forDĈ, DK̂, and DL̂, respectively!. Upon
assuming simple initial conditions of the formp0(q)
5) i p0(qi), the i-dependent terms in the disorder-averag
generating functional~6! are now found to factorize fully
over theN traders, and we arrive at an expression of
following form:

Z@c#5E @DC DĈ#@DK DK̂#@DL DL̂#eN@C1F1V#1O~N0!.

~7!

The subdominantO(N0) term in the exponent is independe
of the generating fields$c i(t)% and $u i(t)%. There are three
distinct leading contributions to the exponent in Eq.~7!. The
first is a ‘‘bookkeeping’’ term, linking the two-time orde
parameters to their conjugates:

C5 i (
tt8

@Ĉtt8Ctt81K̂ tt8Ktt81L̂ tt8Ltt8#.

The second reflects the statistical properties of the play
arsenal of strategies:

F5a lnF E Dw Dŵ Dx Dx̂ expS i(
t

@ŵtwt1 x̂txt1wt xt# D
3expS 2

1

2 (
tt8

@wtwt81ŵtLtt8ŵt812x̂tKtt8ŵt8

1 x̂tCtt8x̂t8# D G . ~8!

The third term, which contains the generating fields, w
describe the~now stochastic! evolution of the strategy valu
ationsq(t) of a single effective agent:

V5
1

N (
i

lnF E Dq Dq̂ p0„q~0!…

3expS i(
t

q̂~ t !@q~ t11!2q~ t !2u i~ t !# D
3expS i(

t
c i~ t !q~ t !2 i(

tt8
@s~ t !Ĉtt8s~ t8!

1s~ t !K̂ tt8q̂~ t8!1q̂~ t !L̂ tt8q̂~ t8!# D G
with s(t)5sgn@q(t)#, Dq5) t@dq(t)/A2p#, Dw
5) t@dwt /A2p#, andDx5) t@dxt /A2p# ~and similar defi-
nitions forDq̂, Dŵ, andDx̂!. The form of Eq.~7! is suitable
for a saddle-point integration in the thermodynamic limitN
→`. With a modest amount of foresight we defineGtt85
2 iK tt8 . Upon taking derivatives with respect to the gener
05612
d

e
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l

-

ing fields$u i(t),c i(t)%, and using the built-in normalization
Z@0#51, we find that at the relevant saddle point

Ctt85 lim
N→`

1

N (
i

^si~ t !si~ t8!&, ~9!

Gtt85 lim
N→`

1

N (
i

]

]u i~ t8!
^si~ t !&, ~10!

Ltt85 lim
N→`

1

N (
i

]2

]u i~ t !]u i~ t8!
Z@0#50. ~11!

The first two are recognized as representing disord
averaged and site-averaged correlation and response
tions. At this stage the generating fields are in principle
longer needed. We will putc i(t)50 andu i(t)5u(t), and
find our expression forV simplifying to

V5 lnF E Dq Dq̂ p0„q~0!…

3expS i(
t

q̂~ t !@q~ t11!2q~ t !2u~ t !# D
3expS 2 i(

tt8
@s~ t !Ĉtt8s~ t8!1s~ t !K̂ tt8q̂~ t8!

1q̂~ t !L̂ tt8q̂~ t8!# D G . ~12!

Extremization of the extensive exponentC1F1V of Eq.
~7! with respect to$C,Ĉ,K,K̂,L,L̂% gives the saddle-poin
equations

Ctt85^s~ t !s~ t8!&! , Gtt85
]^s~ t !&!

]u~ t8!
, ~13!

Ĉtt85
i ]F

]Ctt8
, K̂ tt85

i ]F

]Ktt8
, L̂ tt85

i ]F

]Ltt8
, ~14!

whereasLtt850. The effective single-trader averages^¯&! ,
generated by taking derivatives of Eq.~12!, are defined as
follows „note thats(t)5sgn@q(t)#…:

^ f @$q%#&!5
*Dq M@$q%# f @$q%#

*Dq M@$q%#
,

M @$q%#5p0„q~0!…expS 2 i(
tt8

s~ t !Ĉtt8s~ t8!D
3E Dq̂ expS 2 i(

tt8
q̂~ t !L̂ tt8q̂~ t8!D

3expS i(
t

q̂~ t !Fq~ t11!2q~ t !2u~ t !

2(
t8

K̂ tt8
T s~ t8!G D . ~15!

Upon elimination of$Ĉ,K̂,L̂% via Eq. ~14!, we have now
1-4
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obtained exact closed equations for the disorder-avera
correlation and response functions in theN→` limit:
namely, Eq.~13!, with the effective single-trader measu
~15!.

V. SIMPLIFICATION OF THE SADDLE-POINT
EQUATIONS

The above procedure is quite insensitive to chang
model details; alternative choices made for the statistics
traders’ strategies would simply lead to a different form
the functionF ~8!, whereas changing the update rules for t
strategy valuations of the traders~e.g., by making these non
deterministic, as in@14,4#! would affect only the details o
the termV ~12!. We now work out our equations for th
present choice of model. Focusing first onF, we perform the
xt integrals, yielding) td @ x̂t1wt#, and after performing the
remainingx̂ integrations we get

F5a ln E Dw Dŵ expS i(
t

ŵtwtD
3expS 2

1

2 (
tt8

@wtwt81ŵtLtt8ŵt822wtKtt8ŵt8

1wtCtt8wt8# D .

The Gaussian integration over$wt% gives

F52
1

2
a ln detD1a ln E )

t
F dŵt

A2p
G

3expS 2
1

2 (
tt8

ŵtLtt8ŵt8D
3expS 2

1

2 (
tt8

ŵt@~12 iK !TD21~12 iK !# tt8ŵt8D ,

where the entries of the matrixD are given byDtt851
1Ctt8 . We now take the derivative ofF with respect to
Ltt8 , as dictated by Eq.~14!, and subsequently put allLtt8→0. This gives

L̂52 1
2 ia~12 iK !21D~12 iK T!21,

and limL→0 F52a Tr ln(12 iK ), so that

K̂T52a~12 iK !21, Ĉ50.

We now write our final result in terms of the response fun
tion ~10!, via the identity K5 iG, and find our effective
single-trader measureM @$q%# of Eq. ~15! reducing to
05612
ed

g
of
r
e

-

p0„q~0!…E Dq̂

3expS 2
1

2
a(

tt8
q̂~ t !@~11G!21D~11GT!21# tt8q̂~ t8!D

3expS i(
t

q̂~ t !Fq~ t11!2q~ t !2u~ t !

1a(
t8

~11G! tt8
21s~ t8!G D . ~16!

This describes a stochastic single-agent process of the f

q~ t11!5q~ t !1u~ t !2a (
t8<t

~11G! tt8
21 sgn@q~ t8!#

1Aah~ t !. ~17!

Causality ensures thatGtt850 for all t8>t @so that (1
1G) tt8

21
50 for t8.t#, and h(t) is a Gaussian noise with

zero mean and with temporal correlations given
^h(t)h(t8)&5S tt8 :

S5~11G!21D~11GT!21. ~18!

The correlation and response functions defined by Eqs.~9!
and ~10! are the dynamic order parameters of the proble
and must be solved self-consistently from the closed eq
tions

Ctt85^sgn@q~ t !q~ t8!#&! , Gtt85
]^sgn@q~ t !#&!

]u~ t8!
. ~19!

Note thatM @$q%# as given by Eq.~16! is normalized, i.e.,
*Dq M@$q%#51, so the associated averages reduce
^ f @$q%#!&5*Dq M@$q%# f @$q%#. The solution of Eq.~19!
can be calculated numerically with arbitrary precision, wit
out finite size effects, using a technique described in@17#.

Finally, in Appendix A we calculate the disorde
averaged rescaled average bid^At& and volatility matrix

J̄ tt85^AtAt8&2^At&^At8&, for N→`, as defined previously
in Eqs. ~3! and ~5!. Note that objects such aŝAt& must
asymptotically become self-averaging, i.e., independen
the microscopic realization of the disorder; hence^At&^At8&
→^At& ^At8& for N→`. We find the satisfactory result tha
the average bid is zero, and that the volatility matrix~and
thus also the ordinary single-time volatilitys t

25J tt! is pro-
portional to the covariance matrix~18! of the noise in the
dynamics~17! of the effective single agent:

lim
N→`

^A& t50, lim
N→`

J̄ tt85
1
2 S tt8 . ~20!

Thus the noise termh(t) in the single-agent process~17!
represents the overall market fluctuations, and the covaria
matrix ~18! informs us of both single-time volatility and th
temporal correlations of the market fluctuations.
1-5
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VI. THE FIRST TIME STEPS

For the first few time steps it is possible to calcula
the order parameters~correlation and response functions! and
the volatility explicitly, starting from the effective single
trader measure~16!. Note thatDtt8511Ctt8 and thatCtt
51 for any t. Significant simplifications can be made b
using causality. For instance, we always have (11G)21

5(n>0(21)nGn, with causality enforcing

@Gn# tt850 for t8.t2n. ~21!

At t50 this immediately allows us to conclude thatS00
5D0052. We now obtain from Eq.~16! the joint statistics at
time t51:

p„q~1!uq~0!…

5
exp„2$q~1!2q~0!2u~0!1a sgn@q~0!#%/4a…

2Aap
. ~22!

Equation ~22!, in turn, allows us to calculateC10
5^sgn@q(0)q(1)#&! andG105]^sgn@q(1)#&! /]u(0):

C1052E dq~0!p„q~0!…

3erfFAa

2
2

uq~0!u1u~0!sgn@q~0!#

2Aa
G ,

G1052
1

Aap
E dq~0!p„q~0!…

3exp$2@a sgn@q~0!#2q~0!2u~0!#2/4a%.

We can now move to the next time step, again using
~21!, where we need the noise covariancesS11 andS10:

S105(
tt8

@12G1O~G2!#1tDtt8@12GT1O~GT!2# t80

511C1022G10,

S115(
tt8

@12G1O~G2!#1tDtt8@12GT1O~GT!2# t81

5222G10@11C01#12@G10#
2.

Although this procedure can in principle be repeated for
arbitrary number of time steps, generating exact express
for the various order parameters iteratively, the results
come increasingly complicated when larger times are
volved.

It is interesting, however, to inspect further some spe
limits. We first turn to the~trivial! case wherea is very
small, p„q(0)…5d @q(0)2q0#, and q0 is finite. Provided
uq0u@Aa as a→0, we immediately deduce from the abov
results that lima→0 C1051, lima→0 G1050, and lima→0 S10
5 lima→0 S1152. Hence we find in leading order ina that
q(1)5q(0) andh~1!5h~0!. One easily repeats the argume
05612
.

n
ns
e-
-

l

t

for larger times, and finds that, without perturbations, bo
the system variablesq(t) and the noise variablesh(t) will
remain frozen for timest!1/Aa, the only remaining uncer-
tainty in the noise being the realization ofh~0!:

q~ t !5q01tAah~0!1O~at ! ~a→0!.

If sgn@q0#Þsgn@h(0)#, the system will ‘‘defreeze’’ at the first
instance wheret.uq0 /h(0)Aau. Sinceh~0! is a zero aver-
age Gaussian variable, one should therefore for smalla ex-
pect half of the population of traders~those with nonprofit-
able initial random strategy choices! to commence strategy
chances at time scalest5O(a21/2), whereas the other hal
will continue playing the game with their~for now profit-
able! initial strategy choices at least up tot5O(a21).

It is also interesting to analyze the case where the gam
initialized in a tabula rasamanner~which appears to have
been common practice in the literature!, i.e., p„q(0)…5d @q
2q0# with q0501, and where we have no perturbatio
fields, i.e.,u(t)50. Now the above results reduce to

C1052erf@ 1
2 Aa#, G105~ap!21/2e2a/4,

S10512erf@ 1
2
Aa#2

2

Aap
e2a/4,

S11522
2

Aap
e2a/4~12erf@ 1

2
Aa#!1

2

ap
e2a/2.

The negative value of the correlation functionC10 implies
that for short times the traders will exhibit a tendency
alternate their~two! strategies. Let us now inspect the limi
ing behavior of the above expressions for large and sm
values ofa. For largea one obtains

lim
a→`

C10521, lim
a→`

G105 lim
a→`

S1050.

For smalla, on the other hand, we find

C1052
Aa

Ap
1O~a3/2!, G105

1

Aap
1O~Aa!,

S10512
2

Aap
1O~Aa!, S115

2

ap
2

2

Aap
1O~a0!.

So h(1)5O(a21/2), whereash(0)5O(a0). We also find

K Fh~1!1
h~0!

Aap
G 2L 5S111

2

Aap
S101

1

ap
S005O~a0!,

from which it follows that h(1)52h(0)/Aap1O(a0),
and hence we can write the first steps of the effective sin
agent equation~17! as
1-6
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q~1!5q~0!2a sgn@q~0!#1Aah~0!

5Aah~0!1O~a!,

q~2!5q~1!2a sgn@q~1!#1aG10sgn@q~0!#1Aah~1!

52h~0!/Ap1O~Aa!.

Thus also C205^sgn@q(0)q(2)#&!5O(Aa) and C21

5^sgn@q(1)q(2)#&!5211O(Aa). We observe that for smal
a the first two time steps are driven predominantly by t
noise component in Eq.~17!. This noise component in
creases in strength and starts oscillating in sign, resultin
an effective agent that is increasingly likely to alternate
strategies. Equivalently, this implies that in the initi
N-agent system an increasingfraction of the population of
agents will start alternating their strategies.

Let us finally inspect the initial behavior of Eq.~17! for
the intermediate regime wherep„q(0)…5d @q2q0# with q0

5O(Aa), to which ~as we have seen! also for q05O(a0)
about half of the traders will automatically be driven in d
course. We now putq05Aaq̃0 and find in leading order

C105erf@ 1
2 uq̃0u#1¯ , G105

1

Aap
e2q̃0

2/41¯ ,

S1052
2

Aap
e2q̃0

2/41¯ , S115
2

ap
e2q̃0

2/21¯ .

Thus we havê @h(1)1(ap)21/2e2q̃0
2/4h(0)#2&50, so also

h(1)52(ap)21/2e2q̃0
2/4h(0), in leading order fora→0.

This then, together withq(1)5O(Aa) @which immediately
follows from Eq.~22!#, leads us to

q~2!52p21/2e2q̃0
2/4h~0!1O~Aa!.

We thus find that forq05O(Aa) also the initial conditions
are more or less washed out by the internal noise gener
by the process, within just two iteration steps.

VII. THE STATIONARY STATE FOR aÌac

For generala, not necessarily small, the arguments us
in the second part of the previous section do not hold. I
stationary state, along with agents that will change strat
~almost! every cycle, there will generally also be agents fin
ing themselves consistently in the minority group, which w
consequently play the same strategy over and over again
the latter ‘‘frozen’’ group~a term introduced in@18#!, the
differences between the valuations of the two available st
egies~i.e., the values ofqi! will grow more or less linearly in
time, whereas the ‘‘fickle’’ agents will have values fo
qi very close to zero. In order to separate the two gro
efficiently we introduce the rescaled valuesq̃i(t)5qi(t)/t.
Frozen agents will be those for which limt→` q̃i(t)Þ0.
Similarly, the effective single-agent process~17! is
transformed via q̃(t)5q(t)/t, where now the quantity
05612
in
s

ed

d
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s

f5 lime→0 limt→`^u@ uq̃(t)u2e#&! will give the asymptotic
fraction of frozen agents in the originalN-agent system, for
N→`. The dynamical equation of the rescaled effecti
agent can be written as

q̃~ t !5
1

t
q̃~1!1

Aa

t (
t8,t

h~ t8!

2
a

t (
t8,t

(
t9

~11G! t8t9
21 sgn@ q̃~ t9!#. ~23!

If the game has reached a stationary state, thenGtt8
5G(t2t8), Ctt85C(t2t8), andS tt85S(t2t8), by defini-
tion. We will assume in this section that the stationary st
is one without anomalous response, i.e., temporary pertu
tions will not influence the stationary state and decay su
ciently fast, such that limt→` ( t<tG(t)5k exists. This con-
dition will be met if there is just one ergodic component; it
the dynamical equivalent of replica symmetry being sta
~see, e.g.,@19#! in a detailed balance model. We now defin
q̃5 limt→` q̃(t) ~assuming this limit exists! and take the limit
t→` in Eq. ~23!. Under the assumption of absent anomalo
response, we can use the two lemmas in Appendix B
simplify the result to

q̃52
a

11k
s1Aah ~24!

with the averages s5 limt→` t21( t<t sgn@q̃t# and h
5 limt→` t21( t<th(t). The variance of the zero-averag
Gaussian random variableh follows from Eq.~18!:

^h2&5 lim
t,t8→`

1

tt8 (t<t
(

t8<t8
@~11G!21D~11GT!21# tt8

5~11k!22F11 lim
t,t8→`

1

tt8 (t<t
(

t8<t8
Ctt8G

5~11k!22@11^s2&#. ~25!

Note that^s2&5 limt→` t21( t<tC(t)5c.
The effective agent is frozen ifq̃Þ0, in which cases

5sgn@q̃#. This solves Eq.~24! if and only if uhu.Aa/(1
1k). If uhu,Aa/(11k), on the other hand, the agent is n
frozen; nowq̃50 ands5(11k)h/Aa. We can now calcu-
late c5^s2& self-consistently, upon distinguishing betwee
the two possibilities:

c5K uF uhu2
Aa

11kG L 1K uF Aa

11k
2uhuG ~11k!2h2

a L .

Working out the Gaussian integrals describing the statics
h with variance~25! then gives

c512S 12
11c

a DerfFA a

2~11c!
G22A11c

2pa
e2a/2~11c!.

~26!
1-7
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From this equation the value ofc can be obtained numeri
cally. For largea the solution behaves asc;a21. In Figs.
1 and 2 we show the solution of Eq.~26! and the fraction
f of frozen agents, given according to the theory byf
5^u@ uhu2Aa/(11k)#&512erf@Aa/2(11c)#, as functions
of a, together with the values forc and f as obtained by
carrying out numerical simulations of the minority gam
One observes excellent agreement between theory and
periment above a critical valueac , which we will calculate
below.

From the time-averaged asymptotic correlationc we
next move on to calculate the integrated responsek
5 limt→` ( t<tG(t). Since the occurrence of the Gaussi
noise termh(t) in Eq. ~17! is ~apart from a factora! similar
to that of an external field, we can write the response fu
tion asGtt85a21/2^] sgn@q(t)#/]h(t8)&! . Integration by parts
in this expression generates

^] sgn@q~ t !#/]h~ t8!&!5(
t9

S t8t9
21 ^sgn@q~ t !#h~ t9!&!

and hence,

Aa (
t9

^h~ t !h~ t9!&Gt9t8
T

5^sgn@q~ t !#h~ t8!&! . ~27!

Averaging over the two timest and t8 now gives, in a
stationary state, upon using again the assumption
absent anomalous response and the familiar notati
conventions s5 limt→` t21( t<t sgn@q(t)# and h
5 limt→` t21( t<t h(t)

FIG. 1. Asymptotic averagec5 limt→`t21S t<tC(t) of the sta-
tionary covariance. The markers are obtained from individual sim
lation runs performed with a system ofN54000 agents and variou
homogeneous initial valuations@whereqi(0)5q(0)#, and in excess
of 1000 iteration steps. The solid curve to the right of the criti
point is the theoretical prediction, given by the solution of Eq.~26!.
The dotted curve to the left is its continuation into thea,ac re-
gime ~where it should no longer be correct!.
05612
.
ex-
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of
al

^sh&5Aa lim
t→`

1

t (
t8<t

(
t9

^hh~ t9!&Gt9t8
T

5kAa^h2&. ~28!

The variancê h2& is given in Eq.~25!. We calculate the
remaining object̂ sh& similarly to our calculation ofc, by
distinguishing between frozen and nonfrozen agents and
using the two identitiess5sgn@h# ~for frozen agents! ands
5h(11k)/Aa ~for the nonfrozen ones!, both of which fol-
low immediately from Eq.~24!. This results in

^sh&5K uF uhu2
Aa

11kG uhu L 1K uF Aa

11k
2uhuG h2~11k!

Aa
L

5
11c

~11k!Aa
erfFA a

2~11c!
G .

Insertion into Eq.~28!, together with Eq.~25!, then gives the
desired expression for the integrated response:

1

k
5

a

erf@Aa/2~11c!#
21 ~29!

with the value ofc to be determined by solving Eq.~26!.
Equivalently, usingf512erf@Aa/2(11c)#, we get

k5
12f

a211f
. ~30!

The integrated responsek is positive and finite, and henc
our solution ~based on this property! is exact, fora.ac .

FIG. 2. Fractionf512erf@Aa/2(11c)# of frozen agents in the
stationary state. The markers are obtained from individual sim
tion runs performed with a system ofN54000 agents and variou
homogeneous initial conditions, whereqi(0)5q(0), and inexcess
of 1000 iteration steps. The solid line to the right of the critic
point is the theoretical prediction, obtained from the solution of E
~26!. The dotted curve to the left is its continuation into thea
,ac regime~where it should no longer be correct!.
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Hereac is the point at whichk diverges, which is found to
happen when the fraction of fickle agents equalsa. Accord-
ing to Eqs.~26! and ~29!, we can writeac as ac5erf@x#,
wherex is the solution of the transcendental equation

erf@x#522
1

xAp
e2x2

. ~31!

This equation is identical to that derived in@4# ~for a stochas-
tic version of the game! using replica calculations. The re
sulting value isac'0.337 40. Belowac there might well be
multiple ergodic components, i.e., more than one station
solution of our fundamental order parameter equations~19!.

VIII. STATIONARY VOLATILITY FOR aÌac

In contrast to the persistent order parameterc and its rela-
tive k, the volatility matrix ~5!, to be calculated within our
theory from expressions~18! and ~20! and in a stationary
state of the Toeplitz formJ tt85J(t2t8), generally in-
volves both long-term and short-term fluctuations. This
comes apparent when we work outJ(t) using Eq.~18! and
the results of Appendix B. We separate in the functionsC
andG the persistent from the nonpersistent terms, i.e.,C(t)
5c1C̃(t) and G(t)5G̃(t) ~there is no persistent respon
for a.ac!, and find

2J~ t !5
11c

~11k!2 1 lim
t→`

1

t (
u<t

(
t8t9

~11G̃!u1t t8
21 C̃t8t9

3~11G̃T! t9u
21. ~32!

Clearly, the asymptotic~stationary! value of the volatility
s25J(0) cannot be expressed in terms of persistent or
parameters only. It requires solving our coupled saddle-p
equations~19! for Ctt8 and Gtt8 for large times but finite
temporal separationst2t8. The persistent market correla
tions, however, are found to be expressible in terms of p
sistent order parameters:

J~`!5
11c

2~11k!2 . ~33!

Above ac , this quantity can be recognized as the ‘‘energ
per agentH/N used in the replica calculations@4#. In order to
find the volatility we separate the correlations at stationa
into a frozen and a fickle contribution:

C~ t2t8!5f^sgn@ q̃~ t !q̃q~ t8! fr1~12f!^sgn@ q̃~ t !q̃~ t8!#&fi

5f1~12f!^sgn@ q̃~ t !#sgn@ q̃~ t8!#&fi

and hence

C̃~ t2t8!5f2c1~12f!^sgn@ q̃~ t !#sgn@ q̃~ t8!#&fi .

Insertion into Eq.~32! and puttingt50 then gives
05612
ry
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2s25
11f

~11k!2 1~12f! lim
t→`

1

t (
t<t

(
t8t9

~11G̃! tt8
21

3^sgn@ q̃~ t8!#sgn@ q̃~ t9!#&fi~11G̃T! t9t
21

5
11f

~11k!2 1~12f! lim
t→`

1

t

3(
t<t K H (

t8<t
~11G̃! tt8

21 sgn@ q̃~ t8!#J 2L
fi

. ~34!

We note that the sum( t8,t(11G̃) tt8
21 sgn@q̃(t8)# is the re-

tarded self-interaction term in Eq.~17!. Such a term is a
familiar ingredient of disordered systems with ‘‘glassy’’ dy
namics~see, e.g.,@20#!, and generally acts as the mechanis
that drives the system to a frozen state. Hence, s
consistency of the distinction between frozen and fickle tr
ers dictates that the retarded self-interaction term can
large for frozen traders, but must be small~if not absent! for
fickle ones. Our approximation now consists in conseque
disregarding the retarded self-interaction for the fickle tra
ers:

(
t8,t

~11G̃! tt8
21 sgn@ q̃~ t8!#'0 for uhu,

Aa

11k
.

Thus we retain for fickle traders only the instantaneoust8
5t term in ( t8<t(11G̃) tt8

21 sgn@q̃(t8)#, and find the~exact!
expression~34! being replaced by the approximation

s25
11f

2~11k!2 1
1

2
~12f!. ~35!

This turns out to be a surprisingly accurate approximation
the volatility for a.ac , as can be observed in Fig. 3.

Only in the limit a→` can we expect to be able to g
beyond Eqs.~33! and ~35!, and work out expressions~32!
and~34! exactly. This requires calculating the response fu
tion G̃(t) for smallt, which we will set out to do next. Since
we assume absent anomalous response we may choose
initial conditions. We also choose the perturbation fieldsu(t)
to be nonzero only for a given timet2t, wheret.0. From
Eq. ~17! we now derive

sgn@q~ t !#5sgnF u~ t2t!

tAa
1

1

t (
t8<t

h~ t8!

2
Aa

t (
t8t9<t

~11G! t8t9
21 sgn@q~ t9!#G . ~36!

Hence, for vanishingly small perturbationsu(t2t), and
upon taking thet→` limit,
1-9



ve
at

ry

iv

-

or

me
la-

c
for

.g.,

lu-

e

er
ys
n

lid

ns,
tial
-

J. A. F. HEIMEL AND A. C. C. COOLEN PHYSICAL REVIEW E63 056121
G̃~t!52
2Aa

11k
lim
t→`

1

t (
t8<t

K dFh2
sAa

11kGF] sgn@q~ t8!#

]u~ t82t! G L
12K dFh2

sAa

11kGF lim
t→`

1

t (
t8<t

]h~ t8!

]u~ t2t!G L .

We observe thath5sAa/(11k) is precisely the condition
for a trader to be fickle, in the language of the effecti
single agent. Secondly, from causality it follows th
limt→` t21 ( t8<t ]h (t8) / ]u (t2t)5 limt→` t21 ( t85t2t11

t

3]h(t8)/]u(t2t)50. Hence our result can in a stationa
state be written as

G̃~t!52
2Aa~12f!

11k
lim
t→`

K ] sgn@q~ t !#

]u~ t2t! L
fi

. ~37!

For a→` our stationary order parameter equations g
(12f)/(11k)→1. Furthermore, for a→` all traders
will become fickle, so^] sgn@q(t)#/]u(t2t)&fi→G̃(t). This
leaves for a→` only the trivial solution for Eq.~37!:
lima→` G̃(t)50 for all t. Insertion into our exact expres
sion ~32! for the stationary volatility matrix gives

lim
a→`

J~ t !5
1

2
1

1

2
lim

a→`

C̃~ t !

and hence

lim
a→`

lim
t→`

s51. ~38!

This is the random trading limit.

FIG. 3. The volatilitys as a function of the relative numbera
5p/N of possible values for the external information. The mark
are obtained from individual simulation runs performed with a s
tem ofN54000 agents and various homogeneous initial conditio
whereqi(0)5q(0), and inexcess of 1000 iteration steps. The so
curve fora.ac is the approximate expression~35!. Below ac the
approximate asymptotic solutions of Eqs.~61! ~solid! and ~62!
~dashed! are drawn.
05612
e

IX. THE STATIONARY STATE FOR aËac

When the amount of external information available f
agents to base their actions upon~i.e., the value ofa! be-
comes small, the behavior of the market is found to beco
strongly dependent on initial conditions. Numerical simu
tions show that belowac the sequence( t8Gtt8 is unbounded,
and that within the limits of experimental accuracy:

lim
t→`

(
t8

~11G! tt8
21

50, ~39!

Ct1t,t5c1d~21!t for tÞ0 ~40!

~with Ctt51, by definition!. Figure 4 shows the asymptoti
values ofd as measured during numerical simulations,
different values ofa and q(0). One clearly observes the
dependence on initial conditions, as already seen in e
simulations of Ref.@13#.

We will now use Eqs.~39! and ~40! as ansätze, i.e., we
will construct special self-consistent stationary state so
tions of the fundamental order parameter equations~19!
which obey Eqs.~39! and~40!, as well as the stationary stat
conditionsCtt85C(t2t8) andGtt85G(t2t8). First we ana-
lyze the statistical properties of the Gaussian noiseh(t) in
the single-agent equation~17!. From Eqs.~39! and ~40! it
follows that the noise covariance matrix~18! obeys

lim
t→`

^h~ t1t!h~ t !&5~21!tdg21~12c2d!

3(
t

~11G!21~ t1t!~11G!21~ t !,

~41!

in which

g5(
t

~11G!21~ t !~21! t. ~42!

s
-
s,

FIG. 4. The oscillatory componentd of the covariance@see Eq.
~40!#. The markers represent the results of individual simulatio
performed withN54000 agents and various homogeneous ini
conditions, whereqi(0)5q(0), andafter in excess of 1000 itera
tion steps.
1-10
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From Eq.~41! one can derive, in turn, that the noise va
ables must asymptotically take the form

h~ t !5~21! tgzAd1j~ t !A12c2d, t→`, ~43!

wherez and$j(t)% are zero-average Gaussian variables, w
^z2&51, ^zj(t)&50, and

lim
t→`

^j~ t1t!j~ t !&5(
t

~11G!21~ t1t!~11G!21~ t !.

From Eq. ~39! we know that limt→` limt→`^j(t1t)j(t)&
50, i.e., in the stationary state thej(t) decorrelate for large
temporal separations. For sufficiently larget, and without
external perturbations, Eq.~17! now acquires the form

q~ t11!5q~ t !1gzAad~21! t1j~ t !Aa~12c2d!

2a (
t8<t

~11G! tt8
21 sgn@q~ t8!#. ~44!

Frozen agents are those for which sgn@q(t)# is independent of
time; due to Eq.~39! these will not experience the last ter
in Eq. ~44!. However, due to the properties of the noise in t
a,ac regime~and in contrast to the situation witha.ac!,
even frozen agents will now have limt→` q(t)/t50. Inser-
tion into Eq.~44! shows that frozen solutions of the follow
ing form exist:

q~ t !5q2 1
2 gzAad~21! t ~45!

provided sgn@q(t)#5sgn@q# for all t, soq andd must obey

d512c, uqu.u 1
2 gzAadu. ~46!

Oscillating agents, on the other hand, are those for wh
sgn@q(t)#5ŝ(21)t, with ŝ561. Insertion into Eq. ~44!
shows that oscillating solutions of the following form exis

q~ t !5q1 1
2 gŝ@a2zŝAad#~21! t ~47!

provided sgn@q(t11)#52sgn@q(t)# for all t, so q andd must
obey

d512c, g@a2zŝAad#.0, uqu, 1
2 g@a2zŝAad#.

~48!

Note that, if rigorously frozen and/or rigorously oscillatin
agents were asymptotic solutions of Eq.~44!, then the corre-
lations would come out asC(t)5f1(12f)(21)t ~with
f, as before, denoting the fraction of frozen agents!, and we
would find c1d51. Figures 1 and 4, however, show th
this simple relation holds only neara50. Away from a
50 there will therefore be solutions describing fickle age
that change strategy at intervals intermediate between 1~os-
cillating! and infinity~frozen!. This can be understood on th
basis of Eq.~44!, where due to the noise termj(t) ~with a
finite temporal correlation length! there will for c1d,1 al-
ways be a nonzero probability of nearly frozen agents cha
ing strategy occasionally, and of nearly oscillating agents
changing strategy occasionally.
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h

h

s

g-
ot

X. THE LIMIT a\0

Let us finally investigate the situation neara50 more
closely, where we may use the experimental observation
c1d'1, which implies that all agents will be either froze
or oscillating. We putc5f ~the fraction of frozen agents!
and d512f, and choose homogeneous initial conditio
with q(0).0. We now findh(t)5(21)tgzA(12f) and
our two solution types are given by

q~ t !5H q2 1
2 gzAa~12f!~21! t, frozen,

uqu, 1
2 g@a2zŝAa~12f!#, oscillating,

provided the following conditions for existence are met:

uqu.u 1
2 gzAa~12f!u, frozen,

uqu, 1
2 g@a2zŝAa~12f!#, oscillating, ~49!

gAa.gzŝA12f. ~50!

Neara50 we also know, due toc1d51, that

^h~ t1t!h~ t !&5~21!t~12f!g2, t→`, ~51!

h~ t !5~21! tgzA12f, t→`, ~52!

and that limt→` s25 1
2 (12f)g2. In order to eliminate

the remaining parametersg and f we note that time trans
lation invariance guarantees the validity of the relati
( t(G

n)(t)(21)t5@( tG(t)(21)t#n, and hence

g5~11G!21, G5(
t

G~ t !~21! t. ~53!

The quantityG can, in turn, be expressed in terms ofg upon
inserting Eqs.~51! and ~52! into Eq. ~27!. We obtain

Aa~12f!g~12g!~21!t5 lim
t→`

^sgn@q~ t1t!#h~ t !&! .

Working out the average on the right-hand side, by sepa
ing frozen from fickle solutions, gives for larget

^sgn@q~ t1t!#h~ t !&!5f^sgn@q~ t1t!#h~ t !& fr1~12f!

3^sgn@q~ t1t!#h~ t !&fi

5gA~12f!~21!t$f~21! t

3^sgn@q#z& fr1~12f!^ŝz&fi%.

Since in a stationary state the correlation functi
^sgn@q(t)#h(t8)&! can only depend ont2t8, we must con-
clude that̂ sgn@q#z&fr50 and that either

lim
a→0

g~12f!50 or g512A~12f!/a^ŝz&fi ~54!

~in leading order fora→0!. Multiplication of both sides of
the second equation in~54! by gAa shows that it automati-
1-11
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cally ensures the validity of the second condition of Eq.~50!.
The first equation of~54! will satisfy the second condition o
Eq. ~50! as long asg.0.

In order to proceed we need to calculate the persis
term q in the proposed solutions, which can be seen as
resenting their effective initial conditions. It incorporat
both the true initial conditions and the effects of the tra
sients of the dynamics, which initially will not be of th
simple form~44!. Exact evaluation would require solving ou
order parameter equations for arbitrary times, which is
feasible. However, one can proceed for now on the basi
the postulate that the properties of the long-term attrac
~viz., the Gaussian variablez! are uncorrelated with the valu
of q. The conditions~49! and~50! then simply state whethe
a value ofq, generated independently ofz according to some
distribution P(q), is compatible with a given attractor. Al
though we will not be able to generate all possible station
solutions of the process~17!, we will show how two quali-
tatively different solutions, one with a diverging volatility fo
a→0 and one with a vanishing volatility fora→0, can both
be extracted from our equations.

The first type of solution is obtained for lima→0 f5f0
,1. Now one finds, in leading order ina, that ŝ5
2sgn@gz# and that g5^uzu&fiA(12f0)/a. The conditions
~49! and ~50! reduce in leading order to the complementa
pair

uqu. 1
2 guzuAa~12f0!, frozen, ~55!

uqu, 1
2 guzuAa~12f0!, oscillating. ~56!

This, in turn, allows us to calculatef0 and ^uzu&fi :

f05E dq P~q!E dz

A2p
e2z2/2u@ uqu2 1

2 guzuAa~12f!#

5E dq P~q!erfF &uqu

gAa~12f!
G ,

^uzu&fi5E dq P~q!

12f0
E dzuzu

A2p
e2z2/2

3u@ 1
2 guzuAa~12f0!2uqu#

5
&

~12f0!Ap
E dq P~q!e22q2/g2a~12f0!.

We eliminateg in favor of s5 1
2 &gA12f0 and end up

with the following simple closed equation fors:

s5E dq P~q!
e2q2/s2a

Aap
. ~57!

The associated value forf0 then follows from

f05E dq P~q!erfF uqu

sAa
G . ~58!
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Finally, we can use our observations regarding the first f
time steps~Sec. VI! of the process in order to obtain a
estimate forP(q). These showed for smalla that initially ~i!
for small uq(0)u5O(Aa) the system is driven toward th
oscillating state,~ii ! for large uq(0)u5O(a0) the system
tends to freeze,~iii ! the transient processes are dominated
the ~Gaussian! noise term in Eq.~17!, and~iv! the noise term
is automatically being ‘‘amplified’’~either via a diverging
response function, or via accumulation over time! to an ef-
fective O(a0) contribution. Note that~i! and ~ii ! confirm
that q can indeed be seen as the sum ofq(0) and the net
effect of the transient processes, and that~iii ! and ~iv!
subsequently suggest representing the transient proce
by adding a single effective Gaussian variable. Hen
for small a it would appear sensible to writeP(q)
5(LA2p)21e2@q2q(0)#2/2L2

, which converts Eqs.~57! and
~58! into

s2a12L25
1

p
e22q2~0!/~s2a12L2!.

We conclude thats can be written in terms of the solutiony
of a transcendental equation

s5
1

Aa
F2q2~0!

y
22L2G1/2

, 2q2~0!5
y

p
e2y. ~59!

For uq(0)u→0 we find thats5(ap)21/2A122pL2; hence
we must obviously requireL2,1/2p. The associated value
for f0 then follows from

f05E Dx erfF uq~0!1Lxu

sAa
G . ~60!

Since we cannot calculate or estimate the widthL of the
effective Gaussian noise term without solving our order
rameter equations for short times@L could even depend on
q(0)#, it is quite satisfactory that several interesting prop
ties of the solution are found to be independent ofL. For
instance, one always finds a diverging volatility of the for
s5O(a21/2), and there is a critical valueqc5(2pe)21/2

'0.242 such that foruq(0)u.qc the solution no longer ex-
ists. This solution is clearly the type of volatile state that h
been reported regularly~see, e.g.,@8,9#! upon observing nu-
merical simulations. We have now found, however, th
whether or not it will appear depends critically on the cho
made for the initial conditions. Numerical simulations inde
appear to support the existence and predicted magnitude
critical valueqc'0.242~see Fig. 5!; fully conclusive experi-
ments, however~with even smaller values ofa!, would re-
quire impractical amounts of CPU time and/or memory
order to meet the requirementsp→` andN→` for increas-
ingly small values ofa, and are presently ruled out. In th
limit q(0)→0 one can easily carry out the integrals in E

~60!, giving L5(2p)21/2sin@ 1
2 pf0#. Elimination of L via

insertion into s5(ap)21/2A122pL2 then leads to the
simple relation
1-12
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s5
cos@ 1

2 pf0#

Aap
1O~a0!, a,q~0!→0. ~61!

This is the high-volatility solution shown in thea,ac re-
gime of Fig. 3, withf0 as measured in simulations~see, e.g.,
Fig. 2!. The power ofa in Eq. ~61! is observed to be correc
The observed difference between theory and experiment
regard to the prefactor can be understood as a reflectio
our approximationc1d'1; this amounts to disregardin
deviations from the idealized purely frozen or purely osc
lating behavior, which can indeed be expected to give
approximate theory that~even for smalla! slightly underes-
timates the volatility.

We note that the condition lima→0 f,1 for the above
reasoning to apply can in fact be weakened to lima→0 a/(1
2f)50. The above solution ceases to hold, however, at
point where the fractionf of frozen agents scales asf51
2ka1O(a2), in which case we have to turn to the fir
option in Eq.~54!, rather than the second. This is consiste
with our previous observation that small values ofuq(0)u
lead to a relatively small fraction of frozen agents~and a
large volatility!, whereas for largeuq(0)u such a solution will
break down in favor of states with a larger fraction of froz
agents. Since we can now no longer use the second equ
in ~54! to determineg and hence find the volatilitys
5 1

2 &gA12f, we have to return to Eq.~53!. A fully frozen
state, which fora→0 will indeed be described by this secon
type of solution~since lima→0 f51!, must necessarily hav
G(t.0)5g. This is consistent with ouransätze, since it
gives

FIG. 5. Experimental evidence in support of the existence o
critical value for the initial strategy valuationq(0) below which a
high-volatility solution exists. The connected markers represent
results of measuring the volatility in individual simulations, pe
formed with N54000 agents and initial conditions whereqi(0)
5q(0), andafter in excess of 1000 iteration steps. CPU time a
memory limitations prevent us from doing reliable and conclus
experiments fora,0.0125; the available data, however, are clea
not in conflict with our theoretical predictionqc'0.242 ~vertical
dashed line!, which follows from Eq.~59!.
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~11G!21~ t !52g~12g! t21, t.0,

which implies( t>0(11G)21(t)50, provided 0,g,2. We
can now calculateg from Eq. ~53! and find lima→0 g
52/(22g). Thus we obtain, provided 22g5O(a0),

s5
A2k

22g
Aa1O~a!, k5 lim

a→0

12f

a
.

We also note that the scaling propertyf512O(a) implies
that P(0)5 limq→0 P(q)5O(Aa), since allq values of or-
der q5O(Aa) will contribute to the fraction 12f of fickle
agents, giving 12f5O„P(0)Aa…. We can now calculate
lima→0 g upon explicitly inspecting the effect of a perturb
tion of a frozen state. SinceG(t.0)5g we may restrict
ourselves to considering the effect on sgn@q(t11)# of a per-
turbation at timet, giving in leading order fora→0

lim
a→0

g5 lim
a→0

lim
u→0

K ]

]u
sgn@q1 1

2 agzAk~21! t1u#L
52 lim

a→0
^d@q1 1

2 agzAk~21! t#&

52 lim
a→0

P~0!50.

Hence, since the frozen state hasq5O(a0), we find
lima→0 g51 and

s5 1
2 A2ka1O~a!, a→0. ~62!

Explicit calculation of the prefactor in Eq.~62! would re-
quire taking our calculations beyond the leading order ina,
in order to findk. Equation~62! is the low-volatility solution
shown in thea,ac regime of Fig. 3, withk as measured in
simulations~see, e.g., Fig. 6!. Again the power ofa in Eq.
~62! is observed to be correct. The remaining difference
tween theory and experiment with regard to the prefactor
again be understood as a reflection of our approximatioc
1d'1, which induces a structural underestimation of t
volatility.

XI. DISCUSSION

In this paper we have solved a ‘‘batch’’ version of th
minority game with random external information, using ge
erating functional analysis~or dynamic mean field theory! as
introduced by De Dominicis, which allows one to carry o
the disorder averages in a dynamical context. Since the
namics of the game is not described by a detailed bala
type of stochastic process, equilibrium statistical mechan
tools cannot be applied directly. Phase transitions~if present!
must be of a dynamical nature. The disorder in the mino
game consists of the microscopic realization of the repert
of randomly drawn trading strategies of theN agents. Upon
taking the limit N→` one ends up with an exact non
Markovian stochastic equation describing the dynamics o
effective single agent~17!, whose statistical properties ar
identical to those of the original system~averaged over all
realizations of the disorder!. The key control parameter in

a

e

d
e
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this problem is the ratioa5p/N of the number of possible
values of the external information over the number of age

We find a phase transition atac'0.337 40, signaled by
the onset of anomalous response, in agreement with
value reported recently in@4#. The method used in@4# de-
pends on the fact that for their stochastic version of the
nority game a Lyapunov function exists. Our approach d
not have this constraint and can be easily applied to th
variations of the game where a Lyapunov function is n
available, thus opening up a wider range of models for an
sis ~see, e.g.,@3#!. Above ac ~where anomalous response
absent! we can solve the stationary state of the system
actly, giving exact expressions for quantities such as the f
tion of frozen agents~which is zero fora→` but increases
with decreasinga!, the persistent two-time correlations, an
the persistent correlations in the total bid. The volatil
~which is itself not an order parameter of the system! can be
calculated to a very good approximation. Aboveac , our
method and that of@6,4# are likely to describe the same b
havior@21#. Belowac , i.e., in the region of complex dynam
ics ~inaccessible by the replica approach@15#!, our present
method still applies. In this region we demonstrate the e
tence of multiple stationary states, and derive expression
the relevant observables in leading order ina as a→0. We
show, more specifically, that the occurrence and pract
observability of a diverging volatility fora→0 ~as reported
in, e.g.,@8,9#! is crucially dependent on the overall degree
a priori preference for specific strategies exhibited by
agents att50, which may explain the different observation
regarding thea→0 behavior that have been reported in t
literature @13#. More specifically, our theory points at th

FIG. 6. Experimental evidence for the existence of the limitk
5 lima→0(12f)/a for the low-volatility solution. The markers ar
obtained from individual simulation runs performed with a syst
of N54000 agents and initial valuations of the formqi(0)5q(0)
.qc ~to evoke the low-volatility state!, and in excess of 1000 itera
tion steps. The solid curve to the right of the critical point is t
theoretical prediction, obtained from the exact equations~26! and
f512erf @Aa/2(11c)# describing thea.ac regime. The dotted
curve to the left is its continuation into thea,ac regime~where it
should indeed no longer be correct!.
05612
s.

he

i-
s

se
t
y-

-
c-

-
or

al

f
e

existence of a critical value for the initial strategy valuation
above which the system will revert to a state with vanish
volatility. Our theoretical predictions find quite satisfacto
confirmation in numerical simulations.

The fact that we can analyze the stationary state of
~17!, in spite of it describing a non-Markovian stochas
process, suggests that the present method should also be
able to deal with models where the external information
pends on time, or on the previous behavior of the agents
in the original model@1,22#.
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APPENDIX A: EXPRESSIONS FOR AVERAGE BID
AND VOLATILITY

First we calculate limN→`^At& using expression~3!. We
note that we obtain̂At& simply by making the replacemen
exp@i(tici(t)qi(t)#→(t/aN)(mxt

m in the right-hand side of Eq
~6!. The disorder average is carried out as before, but ins
of Eq. ~7! we now obtain

^At&5tE @DC DĈ#@DK DK̂#@DL DL̂#

3eN@C1F1V#1O~N0!e2F/aE Dw Dŵ Dx Dx̂ xt

3expS i(
s

@ŵsws1 x̂sxs1wsxs# D
3expS 2

1

2 (
ss8

@wsws81ŵsLss8ŵs8

12x̂sKss8ŵs81 x̂sCss8x̂s8# D ,

where we have used permutation invariance with respec
m ~after the disorder average!. The integral is dominated by
the familiar saddle point. Since theO(N0) term in the expo-
nent is identical to that in Eq.~7!, we can now simply use the
identity Z@0#51 to show that

lim
N→`

^At&5te2F/aE Dw Dŵ Dx Dx̂ xt

3expS i(
s

@ŵsws1 x̂sxs1wsxs# D
3expS 2

1

2 (
ss8

@wsws812i x̂sGss8ŵs8

1 x̂sCss8x̂s8# D 50. ~A1!

The last step follows immediately from the antisymmetry
the integrand under overall reflection.
1-14
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To determine the disorder-averaged volatility matrix, which forN→` becomes identical tôAtAt8& due to Eq.~A1! and the
self-averaging property, we first work out the dominant terms in Eq.~5!. Using limN→`(aN)21(mVm

2 5 1
2 , we obtain the

relatively simple expression

lim
N→`

^AtAt8&5 lim
N→`

1

2aN (
m

^@xt
m1Vm/t#@xt8

m
1Vm/t#&.

We calculate this average by making the replacement exp@i(ti ci(t)qi(t)#→(2aN)21(m^@xt
m1Vm/t#@xt8

m
1Vm/t#& on the right-hand

side of Eq. ~6!. Repeated integration by parts over thewt
m shows that we may equivalently put exp@i(ti ci(t)qi(t)#

→(2aN)21(mŵt
mŵt8

m . Following the steps we also took in calculating^A& now gives

lim
N→`

^AtAt8&5
1

2
e2F/aE Dw Dŵ Dx Dx̂ ŵtŵt8 expS i(

s
@ŵsws1 x̂sxs1wsxs# D

3expS 2
1

2 (
ss8

@wsws812i x̂sGss8ŵs81 x̂sCss8x̂s8# D
5

1

2

*Dŵ ŵtŵt8 expS 2
1

2
(ss8ŵs@~11G!TD21~11G!#ss8ŵs8D

*Dŵ expS 2
1

2
(ss8@~11G!TD21~11G!#ss8ŵs8D

5 1
2 @~11G!21D~11GT!21# tt8 . ~A2!
m
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-

APPENDIX B: CONSEQUENCES OF ABSENCE
OF ANOMALOUS RESPONSE

Lemma 1. Consider two bounded sequences of real nu
bersAt andbt . Becausebt is bounded, there exists a numb
b such that limt→`(1/t)( t<t bt5b. Define at5( t<t At ,
and assume that limt→` at5a. Then

lim
t→`

1

t (
t<t

(
t8<t

At2t8btt85ab.

Proof. Upon substitutingt→t1t8 we find

1

t (
t<t

(
t8<t

At2t8bt85
1

t (
t8<t

bt8 (
t<t2t8

At5
1

t (
t<t

at2tbt .

The sequences$a% and $b% are bounded, so there exist num
bers Ca and Cb such thatuatu,Ca and ubtu,Cb for all t
>0. The sequence$a% converges toa, so for anye.0 there
exists aK such that for allt.K uat2au,e/3Cb . We now
chooseM such that for allt.M u(1/t)( t<tbt2bu,e/3uau
andKCaCb /t,e/3. Then we find for allt.M
05612
-

U1t (
t<t

at2tbt2abU
5U1t (

t5t2K

t

at2tbt1 (
t,t2K

at2tbt2abU
<U1t (

t5t2K

t

at2tbtU1U1t (
t,t2K

~at2t2a!bt

2aS b2
1

t (
t,t2K

btD U
<

KCaCb

t
1U1t (

t,t2N
~at2t2a!btU

1uauUb2
1

t (
t,t2K

btU<e.

Hence the limit is as claimed. j

Lemma 2. SupposeGst5G(s2t)PR, where G(t)50
for all t,0 and with limt→`( t<tG(t)5k, and suppose
limt→` t21( t<ts(t)5s. Then for allnPN

lim
t→`

1

t (
t51

t

(
t8

~Gn! tt8s~ t8!5kns.
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Proof. The proof proceeds by induction. Forn50, the
statement is trivially true. Suppose now that it is true for
n<m. Then

lim
t→`

1

t (
t51

t

(
t8

~Gm11! tt8s~ t8!

5 lim
t→`

1

t (
t51

t

(
t9<t

G~ t2t9! (
t8<t9

~Gm! t9t8s~ t8!.
27
.
J.

i-

5.

05612
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The sequencebt5( t8<t(G

m) tt8s(t8) satisfies the conditions
of Lemma 1, application of which gives

lim
t→`

1

t (
t51

t

(
t8

~Gm11! tt8s~ t8!5kkms5km11s.

Hence the claim holds form11, and by induction it is now
proved for alln. j
ton,
y
y
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